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The moment equations have been studied by F. J. Sacherer 

(CERN/SI/Int.DL/70-12, 18.11.1970) up to the second moment. 

Here we extend it to higher moments. 

Let the one-dimensional no space-charge single-particle 

equations be 

i 

x1 = p 
(prime means $1 (1) 

p' = -kx 

and the distribution function be $(x,p,t) which obeys the 

continuity equation 

g + &XV) + $(PV, = 0 

For now we shall consider k to be time independent. 

MOMENT EQUATIONS 

The equations for the various moments of the distribu- 

tion can be derived simply as follows: 

First Moment 

(j;)' = -g 1 x $(x,p,t) dx dp 

= 
I 4 dx dp 

= L 
J c 

x $+Y) + &P'$)] dx dp (3) 

-l- 
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I 
E / x'$ dx dp = ~21 = 5 

(p")l = p' = -G 

where we have performed a partial integration and made use 

of the assumption that $GO as ]xI-f@~ or IpI+=. We can write 

these two equations as 

x 1 t = x1 x1 (4) 

where -1 
x 

x1 z 

rl 5 
Kl i 

Second Moment 

(7)1=2G3=25jT 

(G)‘=Gt +x’p=-k;;2 +p’ 

(P')' = 2 ppl = -2k ?p 

Or we can write 

x2' = K2 X2 

where 

(5) 

(6) 

.-f\ K2- [ZkYj 

Similarly, we get the equations up to, say, the fifth mo- 

ment. They are summarized as 

X’=K n n 'n (7) 

where 
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x1=;:] Kl= IJ ;j 

x2=[j x2= [!jk!] 

2 - 
X2P 

x3= xp2 II -i P 

27 L 
- 
X'P 

X 
[- 

4 = x2p2 
-, 

; xp3 
/-- 
P4 / 

K3 = 
0 -2k 0 1 

K 4= 0 -2k 0 2 0 

0 0-3kO 1 

0 0 O-ilk0 

2’ 2’ '0 5 0 0 0 o1 ‘0 0 0 0 o1 5 
- - 
X4P X4P -k 0 4 0 0 0 -k 0 4 0 0 0 

x3p2 x3p2 
--. --. x5 x5 = = 0-2k0 3 0 0 0-2k0 0 0 3 

X2P3 X2P3 0 0-3kO 2 0 0 0-3kO 2 0 
- - 
XP4 XP4 0 0 O-ilk0 1 0 0 O-ilk0 1 
? ? P P I / 

0 0 0 0-5kO 0 0 0 0-5kO 
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DIAGONAL FORMS OF MOMENT EQUATIONS 

Either by direct computation or by decomposing Kn into 

operators similar to the creation and annihilation operators 

for Bosons and taking advantage of simple relationships be- 

tween these operators, we get (w' q k) 

i 

K12 t w2 = 0 

K2(K2*+4&) = 0 

(K3%') (K32+9ti2) = 0 

K4(K~2+4ti2) (K42+16w2) = 0 (8) 

(K5%') (K5't9W2) (K5'+25W2) = 0 

The regularities of these equations are obvious. These rela- 

tions show that the moments satisfy the following non-matrix 

(diagonal) linear equations 

X "+w2x =o 1 

(x*"+4w*x2)~ = X2V' t 4dX2 = 0 

(x3~'+9w2X3)'~ t w2(x3"+9w2X3) 

= x31'11 t 1ow2x 11 + gw4x 3 3 = 0 

L 
(x41'+16w2x4)" t 4w2(x4"+1602x4) ' 

3 
(9) 

= 
xLlv t 20w'x "'t 6404x4' = 0 4 11 

It t 9w'(X5V+25w2X5) 1 
"+25&x5) 1, t 9wz(x5"+25w~x5)" 

I 
= x5v= t 35w2x "" 5 t 25gw4x '1 t 225~~~ 5 5 = 0 
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The equations for the lower moments are familiar. For 

example, Xl equation gives 

(Z)" t wzj; 3 0 (10) 

which simply states that the center of gravity of the dis- 

tribution oscillates as a single particle. The X2 equation 

gives 

(x2)11 t 4&(X5)7 = 0 (11) 

which is reminiscent of the equation for the Courant-Snyder 

B function. 

BILINEAR INVARIANTS 

We can define the bilinear invariants for the nth mo- 

ment by 

(12) 

where - means transposition, The condition for invariance 

gives 

2 In' = XnlSnXn t Xnsnxnt 
I - (13) 

= XnKnSnXn t XnS,K,X, = 0 

or 

inSn t S,K, = 0 (14) 

It can be shown directly that Sn has the following forms 



-6- FN-221 
0100 

0 0 
1’ 0 -2 

1 
s*= 0 10 0 1 

0 

s4=!o 1 

0 0 0 1 
0 0 0 -4 0 

0 6 0 0 
io -4 0 0 0 
\l 0 0 0 0, 

(0 0 0 0 0 

\ 

/ 

1' 

0 

0 

0 

0 

0 I 

!o 0 0 0 -5 

;:o 0 0 10 0 s5 = 
/, o 0 -10 0 0 

/o 5 0 0 0 

LlO 0 0 0 

(15) 

The regularity is, again, obvious. They give the invariants 

I1 = 0 

I2 
=;;i-" I---- P - ixP ) 

2 

I3 = 0 (16) 
--. _ 

I 4 = X5 2 - 4 x3p xp3 

I5 = 0 



moment) by 

and derive second order equations for these envelopes. 
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The invariant I2 can be defined as a measure of the mean- 

squared emittance. 

ENVELOPE EQUATIONS 

We can define the nth envelope 5, (envelope of the nth 

(17) 

(Strictly speaking, 5, can be interpreted as an "envelope" 

only for even values of n.) We shall demonstrate the pro- 

cedure only for c2 

= 2 5 5 11 + 
2 2 

= 2 5 5 ” t -+ 

2 

2 2 
25 

2 

= 2 Eat, 2 2 
" + > (25) 2 

2 

Therefore 

-- 
52 (j + *2 5 - x2 PZ-(xp12_ 3 

2 c 5: 
(18) 
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Similar procedure gives 

5 ” + w=5 
En 

n n 
= (n-1) 2n,1 

5 - n 
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(19) 

(20) 

Only the equation for 5 2 
is useful, because E2 is iden- 

tical to the invariant 12. All other En obey rather complex 

time equations. The E2 equation is reminiscent of the ampli- 

tude (w 3 f3) equation of Courant and Snyder or the 
J- 

Xapchinsky-Vladimirsky equation in the absence of space 

charge. The C2 equation may be called the rms envelope 

equation. 

GENERALIZATIONS 

Several straightforward generalizations should be 

pursued. 

(a) When k is time dependent k = k(t) we should 

write the single particle equation as 

x' 
i 

= a(t)p, 0 a 
w2 Z ab (21) 

p’ = -b(t)x, 
Kl E 

i 1 -b 0 , 

and proceed in a similar manner. 
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(b) When space-charge force is present we write 

x1 

C 

= ap 0 a 

p' = -bx + LPx 
Kl = 

( 1 

(22) 
-bfF 0 

where % = F(x,t) is the space-charge force. In this 

case a condition must be imposed on F to insure the in- 

variance of 12. This generalization can proceed in the 

manner a la Sacherer. 

(c) The generalization to more than one coupled 

dimensions can be made in a straightforward way as 

indicated by Sacherer. 


